Analysis of Parallel Process in HVAC Systems Using Deep Autoencoders

نویسندگان

  • Antonio Morán Álvarez
  • Serafín Alonso Castro
  • Miguel A. Prada
  • Juan J. Fuertes-Martínez
  • Ignacio Díaz Blanco
  • Manuel Domínguez-González
چکیده

Heating, Ventilation, and Air Conditioning (HVAC) systems are generally built in a modular manner, comprising several identical subsystems in order to achieve their nominal capacity. These parallel subsystems and elements should have the same behavior and, therefore, differences between them can reveal failures and inefficiency in the system. The complexity in HVAC systems comes from the number of variables involved in these processes. For that reason, dimensionality reduction techniques can be a useful approach to reduce the complexity of the HVAC data and study their operation. However, for most of these techniques, it is not possible to project new data without retraining the projection and, as a result, it is not possible to easily compare several projections. In this paper, a method based on deep autoencoders is used to create a reference model with a HVAC system and new data is projected using this model to be able to compare them. The proposed approach is applied to real data from a chiller with 3 identical compressors at the Hospital of León.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reliability Analysis of Three Elements Series and Parallel Systems under Time-varying Fuzzy Failure Rate

Reliability is the most important performance issue in the engineering design process but in the real world problems, there are limitations for using the conventional reliability. Fuzzy logic has proved to be effective in expressing uncertainties in different fields, including reliability engineering. In this paper, For both the series and parallel systems composed of three identical or differe...

متن کامل

Application of Solar Thermal Collectors to Improve the Energy Performance of the Fresh Air HVAC Systems

 In the preset study, the performance of a solar assisted heating, ventilation and air conditioning (HVAC) system in an operating theater building was studied. The yearly performances of the existing HVAC system and the system with the added solar collectors were simulated in terms of energy consumption and provided air conditions using a transient system simulation software (TRNSYS). In t...

متن کامل

Analysis of Fouling in HVAC Heat Exchangers by CFD

The purpose of this study is to identify parameters influence on the particle deposition within fin and tube heat exchanger of air-conditioning systems by CFD analysis. First the basic sketch of periodic geometry drawn and meshing operation including boundary conditions was performed. Then the gas side properties and flow parameters were solved by ANSYS Fluent 14.5 software. Lagrangian equa...

متن کامل

A New Method for Detecting Ships in Low Size and Low Contrast Marine Images: Using Deep Stacked Extreme Learning Machines

Detecting ships in marine images is an essential problem in maritime surveillance systems. Although several types of deep neural networks have almost ubiquitously used for this purpose, but the performance of such networks greatly drops when they are exposed to low size and low contrast images which have been captured by passive monitoring systems. On the other hand factors such as sea waves, c...

متن کامل

Learning of Separable Filters by Stacked Fisher Convolutional Autoencoders

Learning of convolutional filters in deep neural networks proves high efficiency to provide sparse representations for the purpose of image recognition. The computational cost of these networks can be alleviated by focusing on separable filters to reduce the number of learning parameters. Autoencoders are a family of powerful deep networks to build scalable generative models for automatic featu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017